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(20. cont'd)p (e.g., nonlinear damping) as well as dynamic coupling in manipulators. Computer

simulations are presented to indicate the effectiveness and robustness of the

control scheme. When the desired trajectory is completely known before the con-

trol scheme is implemented, then off-line computations can be used to generate

the adaptive feedback gains and the computational efficiency will not be a major

limiting factor with this control scheme. If real-time changes in the desired

trajectory have to be accommodated, the computational efficiency has to be improved

using recursive relations to cimpute the adaptive gains. The necessary recursive

relations are derived and presented in this report.
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ABSTRACT

This report presents a control scheme for accurate trajectory following with robotic

manipulators. The method uses feedforward control using model-based torques for fast operation

and gross compensation. and adaptive feedback control for correcting deviations from the desired

. trajectory under feedforward control. The adaptive controller eliminates trajectory-following errors

- in the least squares sense. The control scheme takes into account dynamic nonlinearities (e.g.,

coriolis and centrifugal accelerations and payload changes), geometric nonlinearities (e.g., nonlinear

coordinate-transformation matrices) and physical nonlinearities (e.g., nonlinear damping) as well as

dynamic coupling in manipulators. Computer sim~ilations are presented to indicate the effectiveness

* and robustness of the control scheme. When the desired trajectory is completely known before the

control scheme is implemented, then off-line computations can be used to generate the adaptive

fedback gains and the computational efficiency will not be a major limiting factor with this

* control scheme. If re3l-time changes in the desired trajectory have to be accommodated, the

computational efficiency has to be improved using recursive relations to compute the adaptive

gains. The necessary recursive relations are derived and presented in this report.

.21*
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1. INTRODUCTION

* Many robot applications today and in the future will require accurate tracking of a prespecified

continuous path. Common examples of these tracking applications include seam tracking, arc

welding, cutting (laser and water jet), spray painting, contours inspection, co-ordinated parts

transfer and assembly operations. These tracking paths are usually specified with respect to the

• end effector of the robotic manipulator and can specify tiajectories with respect to time as well

as position. The problem with achieving this objective of temporal path following is that strong

nonlinearities in the dynamics and geometry, unknown parameters, modeling errors, measurement

errors, unplanned changes in operating conditions, and other disturbances are present in the

manipulator and they make accurate control of the manipulator very difficult.

To achieve this goal of accurate path following, a control system is needed, which

1. accurately tracks the desired end effector trajectory, often in terms of time as
well as position;

2. rejects a wide class of disturbances, such as parameter variations (i.e., changing
payload), vibrations and the effects of static friction. and measurement errors;

3. has minimal complexity, is computationally fast, can accommodate a high

sampling rate;

4. is very reliable, particularly in terms of robustness of the control scheme.

Many control systems, which meet these requirements with different degrees of success, have been

proposed and some have been implemented. The control scheme developed in this report can

accurately follow a prespecified trajectory while rejecting many classes of disturbances by using a

feedback control scheme that minimizes position and velocity deviation in the least squares sense

while allowing for the changing of the feedback control parameters to account for unknown

changes in payload or desired trajectory. A two-link manipulator simulation shows the

effectiveness of this control scheme for trajectory following. However, the computational effort

required with this control scheme is high enough to limit the maximum sampling frequency

-- allowed for manipulator control in real time. Therefore the maximum trajectory-following

* accuracy that this control scheme can achieve is also limited by the computational effort, if the

desired trajectory is not known a priori, and is changing in real time.

POO
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1.1 Control Schemes

Linear servo control is the most common type of control in commercial use today [3]. This

control method involves having a separate feedback loop closed over each manipulator joint that

feedbacks the position (and sometimes velocity) of that joint. This control method has several

problems which limit its commercial usefulness. Since each control loop is closed independently

over each manipulator joint, it has poor compensation for the dynamic coupling (i.e.. particularly

coriolis forces and coordinate coupling) between joints because the effect of the motion of one

joint on another is viewed as a disturbance which the feedback controller of the second joint

must compensate for. At low speeds, these "disturbance" forces are small and can be easily

compensated for, but at high speeds, these forces are major components in the dynamics of the

manipulator, and the controller will fail to totally reject these "disturbances" and the end effector

will no longer be following the correct path (8]. Another factor is that the servo parameters

usually are tuned for one set of operating conditions and can not be changed to meet changing

conditions like payload variations during robot operation. Furthermore, classical servo control

assumes linear plants, which is not close to reality in the case of robotic manipulators.

Other control schemes have been proposed that eliminate some of these problems but none have

been commercially implemented. These methods include Model-Referenced Adaptive Control,

Sliding Mode Control (a method of designing switching feedback regulators based on minimum

time, bang-bang control), optimal control, nonlinear feedback control and feedforward control.

Application of these control techniques, particularly for real-time control, is hindered by the

complexity of the associated control algorithms, which increases the computation-cycle time and

decreases the control bandwidth.

In model-reference adaptive control [4, 5], feedback controller parameters are adaptively

. changed to drive the manipulator response toward that of a reference model. This reference model

need not represent the actual manipulator and is chosen to suit the required dynamic behavior. For

example, a simple oscillator (a linear second-order differential equation) could be used as the

reference model for each joint of the manipulator.

Controller parameters are adjusted according to a differential law that uses the error signal (the

difference between response of the reference model and the actual robot) as the input. There exist

several drawbacks in this scheme, including the following:

I. Structure of the feedback controller is not automatically generated by the control
scheme.

2. The adaptive law has to be derived from scratch for the particular reference model
chosen.

3. The control law is completely independent of the robot model.
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4. The control action has to be generated faster than the speed at which the nonlinear
terms in the robot change.

5. The adaptive law is derived on the assumption that some of the nonlinear terms in
the robot model remain constant.

- It is clear that even though this technique can produce satisfactory results, particularly due to

the presence of adaptive feedback loops, there is no guarantee that the required accuracy is

obtained in a given situation of trajectory following.

A control technique that strives to obtain linear behavior from a nonlinear manipulator is known

as sliding mode control [9]. In the generalized case of this method (only the two dimensional

case is presented by Klein and & Maney [9]). the state space is partitioned into several regions

that are bounded by a space trajectory conformal to the desired linear behavior. The objective of

the control would be to drive the manipulator along the desired trajectory. This is accomplished

by assigning a different control law for each region in the partitioned state space. If the

manipulator deviates from the desired trajectory and enters a particular region of the state space

the corresponding control law is switched on. This will drive the manipulator back into the

desired trajectory. If it overshoots, however, the control law of the new region which the

manipulator entered will be automatically switched on to drive the the ma!)ipalator into the

desired trajectory. If the alternative control laws that are assigned to the various regions can be

switched on at infinite frequency, which is of course not realistic, it is possible in theory, to

obtain ideal behavior. In practice, however, the response will chatter about the desired trajectory.

The amplitude of chatter will depend on the manipulator dynamics as well as control gains used.

In addition the switching frequency will depend on the deadband of control. These shortcomings

of sliding mode control can be aggravated by the fact that the control laws are selected in a

heuristic manner, without even employing a model to represent the actual dynamics of the

manipulator. At its best, sliding mode control usually brings about tune delays (non-synchronous

response) in addition to chatter. This technique too, has not been implemented in commercial

robots.

In optimal control, the feedback control law is designed by optimizing a suitable performance

index using a dynamic model for the manipulator. Control laws obtained in this manner can be

highly complex except in a very few special cases. A nonlinear control approach that has been

proposed for robotic manipulator control is aimed at obtaining a desirable linear behavior from

the manipulator by employing a highly nonlinear feedback law [6. 1]. Unlike the model-

referenced adaptive control method, this control law is derived from an accurate nonlinear model

for the robot. The main disadvantage of the method, as has been warned by Asada & Hanafusa,

[I] is the feedback law that is so complex, it is virtually impossible to compute the feedback

parameters in real time for practical robots. Furthermore, performance of this nonlinear control

system is known to be quite sensitive to fidelity of the robot model that is employed.

• - -,' ' "'- ' , '"* " , , ,"* ," "" " " "-" ." " -. '• - ","'"*'. " ." , '." .. """', , - " ,"4- -.- " -* , ".' '' ', , " - "- " -" "" . ',
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2 CONTROL

This control scheme developed in this report involves the combination of feedforward control

with a least squares adaptive feedback control scheme.

2.1 Feedforward Cont.'ol

This is an open loop control method. This method involves calculating the torques that must be

applied at each manipulator joint so as to have the end effector follow the desired trajectory.

These torques are computed by from the differential equation which models the dynamics of the

n-degree of freedom robotic manipulator. This is known as the inverse-dynamics problem,

M(q,W)j + f(q.,4,W) - (1)

where
W : payload

q : vector of generalized joint positions

M(qW) inertia matrix (n x n)

f( .,W) : vector representing centrifugal,
coriolis. dissipation and gravitational forces

r(t) input torques or forces at the
manipulator joints

In practical manipulators, input signals (e.g., field voltages, servovalve commands) produce

motor torques at the joints, with some dynamic delay. Motor torques are converted into the

torques that are actually applied to the links of the manipulator, with additional dynamic delay.

Manipulator displacements are a result of these joint torques. It is thetefore clear that, by either

measuring or computing joint torques it is possible to eliminate part of the delay in a

manipulator control system. Consequently. feedforward control has the advantage of speeding up

the manipulator response. Furthermore, torque disturbances can be calculated or measured, they

can be completely rejected using feedforward control. A main disadvantage of feedforward

control, in the present context, is that due to model errors and unknown disturbances, the

calculated torque is not the ideal torque and as a result errors can grow in an unstable manner

unless some form of feedback control is used.

Since in inverse dynamics a mathematical model of the manipulator is used to calculate the joint

torques required, when these torques are applied to the actual manipulator it might not follow the

desired trajectory accurately. This would be due to the cumulative effects of modeling

. .

_ . .. o . - .. . . . . o q . . . . .. .
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inaccuracies, computational limitations, and unaccounted for effects lake vibrations and static

- friction. Therefore, for accurate tracking using feedforward control a precise dynamic model has

to be employed and the manipulator must be made very rigid with stror, structural links and

precision gear trains and actuators. Another problem with this method is that the computational

effort required to accurately compute the necessary torques in a real-time situation can become

very significant if the desired trajectory is not known a priori and may not allow a sufficiently

* high sampling rate for good control bandwidth.

. An adaptive feedback is used in the present control method to correct for these problems.

2.2 Background Theory

In most instances, feedforward control needs a feedback controller to correct for unaccounted

disturbances in the system. Since linear-servo control offers only a limited ability to compensate

for nonlinearities, model errors, measurement errors and disturbances a more adaptive feedback

* controller was developed by R.P. Paul [2]. This controller is based on a nonlinear coupled

dynamic model of the manipulator, and therefore takes into account effects that linear control

usually neglects. It also allows for updating the control parameters to take care of unknown

external disturbances and payload variations. The basic block diagram for the control system is

seen in figure 1.

W RSE N MSE Tm JOINTM. JACOBIAN DYNAMICS JOITR
PdM MOTORS

Figure 1. Basic control diagram for the manipulator

"+

. .,* * *. .. -.. . . . . . .
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-- 2.2.1 Linearization

We can linearize the nonlinear set of differential equations (1) with respect to small

perturbations, 3q, from the desired trajectory, qd(t). caused by small torque disturbances, 3r(t)

.M amf af
M*q W) 5 8r ( VVfV4 aN4,d,)t)-( )3 (2)

Dq q a

where

Dq k-I aq.

This equation can be rearranged in vector-matrix form

10 0 0 -I Jq 0

-- 5 (t) (3)
• : -9M. 8f 8af ,t

d q aq a8 d

where. I denotes terms evaluated in terms of the desired trajectory, q Mt.
d

This is, in fact, a state space representation with the state vector and the input vector given by

x - E ,q, q 3T. u ar

thus,

x - Ax(t) + Bu(t) (4)

where, the system matrix

1 0 0 -I

A(q, q,q, W) d -5)

.aCM a. a.0 M" qT.SM.f 8
q q 4-q d

and the input gain matrix is

0

B(q , W) (6)

dd M-!

Since what is developed would be implemented as a digital control scheme, we need the discrete

form of the state space representation
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for -- -Ax + Bu(t)i di
The solution to this linear differential system starting at trt, can be represented as

X(t) + (t~ot ot) + *(t,,8)B(fl)u(f)dfl (7)
0

which assuming time invariance in the neighborhood of the perturbations. can be expressed as the

set of difference equations

x(+ ) - *(k) + u(k) kd0, 1,2.3....

in which

+ e AT = state transition matrix

r _ S eCAdjBS input gain matrix

T adata sampling period

2.2.2 Minimization

Since the state vector x represents the deviation in position and velocity, from the desired

trajectory, then the objective of the minimization is to drive x to zero as fast as possible. This

will be accomplished in the least squares sense by using the following objective index

Least Squares Minimization Performance Index
N

xk (*x(k) + rumk1x ) +k + u(k) 1 (8)
k-1

where 0 is a diagonal weighting matrix. Q is used to weight the relative importance of each

joint position or velocity. This allows the motions of critical joints to be more heavily weighted

than the motions of other joints.

This minimization is a Linear Quadratic Regulator (LQR) minimization problem so the optimal

feedback gain should be in some form of the steady-state Ricatti equation.

%.%



; 2.2.3 Optimal Feedback Gain

" - Using straightforward calculus it can be shown that the optimal control law is given by
u(k) = -Kx(k) (9)

where K =( T I)-1 rTQ a x(k) (10)

It should be noted that this feedback control law is realizable if

rank( rT a F) * n (11)

In particular, if
Q is positive definite, we must have

rank(") = n (12)

where, n degrees of freedom of manipulator

2.3 Control Strategy

The complete control strategy for the manipulator is shown in figure 2. First the desired end-

effector trajectory of the manipulator is jenerated. Then, using some inverse kinematics scheme,

each incremental displacement, velocity and acceleration of the end-effector is translated into the

" corresponding motions of the n joints. With the inverse dynamics of the manipulator, the desired

gross torques for each joint can be calculated. These torques are applied to the actual

manipulator in a feedforward manner. The actual joint positions and velocities are then measured

*once every period. T, using resolvers or encoders. The difference between the actual and the

- desired joint motions is then multiplied by the optimal feedback gain matrix, K. to produce the

• vector of torque corrections that need to be added to the gross torque vector for proper control.

* A suitable criterion is needed to decide when to update the feedback gain matrix, K. In the

* present work the following criterion is used.

0 Initially specify the weighting matrix 0. and calculate, , and r.

* Compute the initial feedback gain matrix, K using equation (10).

* Update the feedback gain matrix, K. according to the criterion

-. If fx11 <f Skip torque error feedback

2. if "X1j I update *.r,Q. and K

3. If 11x1> Excessive Error, terminate operation
!2

Note that f ( E The error norm is defined as I ax I IxI

* Update the weighting matrix, , by changing the diagonal elements in proportion to
the maximum absolute value of the state, Ix

'. max
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IFigure 2. Complete block difrlm for control strategy
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.3.1 Stability

If the manipulator model is significantly different from the actual robot, then the feedback law

could cause instability in our control system. Stability is guaranteed if the closed-loop state

transition matrix, fe, has all its eigenvalues inside the unit circle on the Z-plane. Note that

r 4, - T Q r)" -1rr T Q] t,

where

r , actual plant manipulator matrices

* , r • manipulator model matrices
0 0

i~~~~~~~~~~~~~~~~~~~."..':.".'.-."-'...".. ,-.-........:'... .'-".... ..-.... . -..... .........
L. _ , - - # * - , ,*. " •. .• - * .;.. .' -' *. " . . -, . . i. *. . " .-.- . .. "-"-" ', .
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3. SIMULATION RESULTS

The effectiveness of the control strategy presented in this report, is examined using a two-

degree-of-freedom manipulator. The manipulator equations are given in Appendix A. Two types of

disturbances were tested for this control scheme:

1. a 7% external disturbance (figures 3.1 and 5.1), and

2. a 7% error in link lengths and a 9% error in link inertias (figure 4.1).

* Typical results corresponding to these three cases are presented in figures 3, 4, and 5. In all

• three cases the feedforward control alone produces an unstable trajectory following. By adding

- the adaptive optimal feedback controller the actual trajectory was brought very close (8%

* maximum position error) to the desired trajectory.

It appears that our control scheme satisfies three of the four design goals for the controller:

accurately tracks the end effector, rejects a wide class of disturbances, and is very reliable. The

last goal is minimal complexity, or making the scheme computationally fast enough to allow an

adequate sampling rate for on-line trajectory generation and control.

- 3.1 Two-Link Manipulator Results

.. * -

. . . . . . . . . . . . . ..o.... . . . . . . . . . . . . . . . .

.. . . . . . . . . . .

. .. . .. . . . . . .. . . . . . . . . .
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X-Component Trajectory
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* 4. COMPUTATIONAL CONSIDERATIONS

The computational time that is required to update 4, r, Q and K. will determine the minimum

error, f that can be used in the control strategy and therefore determine the accuracy of the

trajectory following. This update time will therefore affect the maximum sampling rate that can

"- be used in the feedback loop when on-line trajectory generation is necessary. In many high

accuracy applications, the update time will be the minimum sampling period allowed, while in

other less critical situations, the use of the old gain matrix. K, during the time needed to

calculate the new gain matrix, K , will not greatly affect the trajectory error. It is obvious that

we want to minimize the update time so that the maximum sampling frequency is increased

enough to permit good control bandwidth for the robotic manipulator.

The total computation time can be divided into three main computations:

0 the feedforward gross torque calculation.

_ the calculation of the A and B matrices, and

* the updating of 4r, F, Q and K.

. 4.1 Feedback Controller Parameter Calculations

In the two link manipulator simulation, Sylvester's theorem [13] was used in the calculation of

4. This theorem requires the calculation [11I of the eigenvalues of the system, and then the

calculation of + by use of = FlexIT + F2 ex 2 ... F N )XNT. For complex eigenvalues, 4

is written as damped sine and cosine terms, and r is calculated by a simple integration of these

sine and cosine terms. An alternate method of 4' and F calculation is the use of the series

expansion method. Specifically,

00

4 k ATk/k! " I + AT+I-A2T 2 + ... (13)
k .o 2!

00 
A"' Ar

l (1  AkTk /(k+l)!]B - [7 + - + ... B (14)
k. 2! 3!

This method is found to be computationally faster because the sampling period, T, is

comparatively small so the higher order terms are negligible. Using an m l order expansion for

calculating 4 and r then the number of multiplications for each parametric matrix is

(2n)' . Because the computational expense is increasing exponentially when the number of

terms in the expansion is increased, so a small data sampling period, T, is very beneficial

computationally.
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The calculation of K

K - (r Tor)- T o .

involves matrix multiplications, transposes, and the inversion of the matrix, (rTQ.). The inversion

of the matrix takes the longest to compute, and using the Gaussian elimination method, the

number of operations is O(n 3 ) for an n x n matrix. All these are standard matrix operations and

codes are available to accomplish these operations in a computationally efficient manner.

The update calculation of Q is done by changing the weights of the diagonal elements in

proportion to Ix which represents the maximum deviation of any joint's position or velocity

from the desired motion. It is found that in most cases, the updating of Q does not significantly

affect the feedback gain matrix, K. so updating Q can be ignored if computational time is very

critical.

4.2 Feedforward Computation

Many new robot applications require on-line decision making, database access, and interaction

. with other machines. Therefore the inverse dynamics need to be computed in real-time to obtain

the gross torques of the manipulator joints, which need to be provided by the joint motors. The

standard method used to derive the inverse dynamics is the standard Lagrangian formulation. Luh,

Walker and Paul E10] have shown that this method would require about 7.9 seconds on the PDP

11/45 to calculate the gross torques for one position of the Stanford Arm using an efficient

Fortran program. This formulation requires a computational effort of 0(n4 ) because the method is

doubly recursive with many redundant operations. The standard Lagrangian method computes the

torques directly using

aw w iwT Ow. a 2W T  aw.
- t (w-j, I ))~ q**. (tr(--) q q ) - i m j Jr 1k-" aqi aq, aqi aq& 1qJ aq .

The computational time for this is obviously too long, so various methods of reducing the

number of computations have been tried. Since most of the computational effort is devoted to
calculating the triple sums involved in the coriolis and centrifugal forces, many computation

schemes ignore these terms. The problem with this is that at high speeds, the coriolis and

centrifugal forces dominate in the manipulator dynamics and therefore the burden of compensation

is increasingly placed on the feedback controller. While this method can work at low speeds, at

high speeds this approximation could mean that excessive torques must be applied. The controller

might not be capable of doing this and sometimes burnout of equipment could result. Alternative

methods are available using the Newton-Euler (103 or Lagrangian [7] recursive relations. These

methods yield the same torques as the standard Lagrangian approach, but are computationally

faster because the standard Lagrangian approach involves redundant operations. These recursive

. ... .- . . . . . . . . . .
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relations reduce the computational effort required to 0(n). Luh's Newton-Euler formulation in

floating point assembly has been shown to take 4.5 milliseconds on the PDP 11/45 for the torque

*calculation of one position of the Stanford Arm. This will allow a sampling rate for the

manipulator of greater than 60 Hz which insures good control bandwidth for the manipulator. The

Lagrangian recursive relations are presented here because the computational formulation for the

*. feedback gain matrix, K. is based on this approach.

4.2.1 Recursive Lagrangian Dynamics

In the following, the recursive Lagrangian dynamics procedure [7] is used to calculate the joint

torques. First, all the WT terms are calculated using equations (17) and going from i-I to i=n.

Then the D i and c terms are computed from i=n to i=l using the forward recursive relations
(16). Finally, the torques are computed using equation (15). This formulation has 830n - 592

multiplications and 675n - 464 additions which result in 4388 multiplications and 3586 additions

for n=6.

,= tr( ' Di) - 9T-2 C,] = 1 ..... n (15)
'q, aqi

where

Forward Recursion

For i = n,.... I

TD. JW + A D (16)
i i+l i+I

C . Mr A14 c,"'" i • i I i+l Ci+1

Backwards Recursion

For i - 1,....n

%WI Wi =Wi.I Ai

,aA.
W,- w, A, + W1 1  qi, (17)

eq,
aA , a;2A . 2 aA.

W -WIAi + 2WH -A + W H A + W MA qt1 a q, aq W tq2 q, W -q,
a-I q eI

. .
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4.3 A and B Matrix Calculations

Since the A and B matrices are based on the linearization of the manipulator dynamics about a

desired trajectory, it is suggested that an efficient formulation for their computations may be

based on the Lagrangian or Newton-Euler recursive relations for the solution of manipulator

dynamics.

4.3.1 Derivation

Looking at the structure of the A and B matrices it is seen that three submatrices need to beI m .. 49f 'af

calculated: M -, Tq+ 5--, and - The Lagrangian approach will be used because the

formulation is much clearer and the most efficient Lagrangian relations are of the same order of

computational effort as the Newton-Euler method.

The general Lagrangian formulation for the generalized forces, r., for and n-link manipulator is

ew. aW.T ewi a . ew.
a : [ 2: (t(--i , 4~ : (tr(-'J.J )ikiIM J ir] (18)

j.) k-I eq i 'e oq k  k-I Io1 e qi J3q kq " eqi

which also can be written in the form E 12]
aa n

D = ' qj + Di'iO qJqk +D (19)
ei j-1 k-i

where

aw aw T

Di m - j e tr(-J " P) inertia forces

n aWT

D.= * tr( J -P) = coriolis and centripetal forces:"p-max,.,. aq J.q k  i q
a" aw

Sa I -m Pg q Pr gravity forces

andwhere

W =W - AA ... A.
W 2

AW. A A. ... A i<j
"-J i+ i2 J

.. .
o
.. . . .

. . . . . . . . . , - . .' .. . . . . . - . . . . . . .
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4.3.2 Linearized Matrices
'- Te hre atics.M ", aM'" af af

'The three matrices. -q + , and -, are necessary to compute results from the
q~ aq a

linearization of the inverse dynamics with respect to small perturbations. 3q.

q+ - 1 term:
+,.aq aqJ

The first matrix computation formulation is [L j+a fi]. This matrix is derived by taking the

partial derivative of the generalized forces with respect to the joints' position vector. So

[am ii+. iij a ..... n , i=1 .... n (20)

But Waters [141 proved that instead of the standard Lagrangian, the generalized forces can be

expressed in a form that will permit several backward recursive relations to be derived that will

reduce the computational effort to 0(n 2
On:)

9 Tr( r] Mg -!Pr n (21)
-j q, aq,

where the backward recursive relations for velocities W and accelerations W arep p

W =W A

aA
"p = Wp-I AP + WP, - qP (22)

aA a'A 8A
""W =W- A + 2W 2- +  +

P P1 P1 P1 q1 eqP
q " aq, Paq2 P

* Using the same formulation for the generalized forces, the derivative of the generalized forces

can be expressed as
" aw aw

1..-- tr (- - J "-) -P (24)
"- a,,aq, a q, P aq aqaq,

Now

b'-7
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a eW
if j< p then -(-) O0

and P 0
aqj

since W = OW = A A ... A

Consequently, the matrix formulation can be written as

- +. ]= [tr(-- J Wi T) + tr(- j rna T - T - - -WP 'r (25)
[a p-max 1,]L 2: 1 Pq ) - qi' qjaq a eMxq ~ Daqj

for i = .. n and j =

Now a forward recursive relation can be developed by noting that

aw~ aw
- - -

tw

aqi aq, P

where 'W =A A A i..pp i+l i*2 "" P

Therefore for the two cases of the double derivative we obtain

if i > j

a -q ea, ewew,,
::'.. . w i ai

,e 8+ 8qW
a qia~qj P a qi 8qj

a2w.8W.

" Similarly for j > i

W a
2w

P J iw:-" aqi~qj aqiaqj

Because of the symmetry of the equations of the double derivative, only the case i > j will be

- considered in what follows.

Rewriting the matrix formulation as

'U*%~. - . . .
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* M e 2w ew. qW T a2W.
[LM -. 1 af ....... iW j W T

q+ r( P )+tr(- W )m -'W PrP (26)
* q e'a -r aqaq, P q P ~e P "iq

eM +fprf e w~j WPT+r aw1  w PT)-g T a2w Prj (7

*then the reformulation can be written as

eq eq
a2w Aw ei ewT a2wU

Ftr(- v W j W T) +tr(....X iW j P L)gT i....I...m 'WP Pr1 (28)

* Let

1. P* p p

WJW A +1 WjW T

Now since Wa5

we get D. j JW i* A 01D 02(29)

Also, let

C. 3  M 'W P,

Cm. ir *A c (30)

and

N -J a; 1 *A N (31)e a . 1*1 1

*Now for i 2: j the matrix is simply written as

[Af.. et e2W ew, e2L
- Fi tr( -D.) + tr(- N.) e±-o (32)

eq aq eqiqj elqt eqaqj
*By a similar procedure we get

for j : i

[eM..a' .
2w aW. e2W 1 ,

q+ 1 tr(-- D.)+ tr(- N) gT C(3
eq eq eqpeq, eqi eqclqj
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where

D=j T + A D (34)
i i j+ jI

c =m Jr + A c. (35)
j j j pIj t

N= J + A  N (36)

qj j+1 j-1

af
(b)~ term:

Using a procedure similar to what is given in the previous section, the [-.l term can be

simply formulated as a set of linear recursive backward and forward relations. This matrix term

is derived by taking the partial derivative of the generalized forces with respect to the joints'

velocity vector. So

[' -I . -- ,, l,....n, j 1 , ...n (37)

Now using Waters generalized forces formulation, the matrix becomes

af awp awT )I - tr( (38)
LaqJI ~J cq aqj

If j> p then -- = 0
aq,

Consequently the matrix equations are written as

af n" r 9 aW P T39

P-Max z.

Consider first the case of

If i >

8f - tr( W 'W J -- ) (40)I , aq P
tr( - , 1W P i- (41)8q P
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Now, it can be shown that

)W 
T  C)WT

p P
(42)

- Which leads to the reformulation

8f WT T
',- j=tr( WVW Jv P (43)
k O~q, p,-i q

that produces the forward recursive relation by letting

O1 z iW PJP wi a-X., ,, - n-
P.1.

8W. T
0 At+j 0i. + J. - (44)

1 I

So the matrix compuation is simply formulated as

aw.
tr(- 0) (45)

Considering the other case and by applying similar arguments we get

for j 2 i

i,, ""<°+"+ + , , . +,,w7  +, '[-] aqL tr(-

'-:: Then the matrix is formulated as[ ] =.<-w. o. T4

• •O.= W J  (46)

0 A- ( 0 (47)

(o) M. term:-. IJ

The next matrix to be calculated is the inertia matrix, M. The recursive relations are derived in

the same manner as the other matices. Specifically,

.~~~~~~~~~~~....•.".""......... ...... ......... ,.... . .:..'/ ,:"' "". ..- " '..""-" .".'-.-.
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,%'.% . * aw DaW I

M * . " tr(.j- - . _ ) (4 9 )
P-ma.i j 19q P q.q

- For i j
2:. aw awT

aq P

" ' " M .. t r ( - -  P  ' W J - - -- ( 5 0 )
p., a~qi aqj

aw a aWT
M - = tr(- X w .i..WpJ __ (51)13q i p-i Pcq

the forward recursive relation is

P.= T i ~ p

aW.T

P P1  *, J-' (52)

and the matrix is computed simply by

aw.
IjI

M. = tr(- P1) (53)
'J aq i

for j > i
"' oW. aWT

M = ,tr(- W.'W J

' p aq, ) q

In this case the matrix formulation and forward recursive relations are

aw
M . = tr( - -  'W . P.) (55)

aw T

P -Aj+IP+I + J- 2 -wj (56)
jaq

The last terms that need to be calculated are the LW and -NV terms. The backward linear

•~ j aq jq

- recursive relations needed to calculate these terms are now presented.

(d) term:aDqj
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For p k j

a p a j j

ew ew. ew.
p i w + - j (57)

aq -q p +2- 2 j p q

and for j 2!p

p p-I p

aqp
aA a A aA

Jw W A + 2JW + +W -q + W - qpp p-I p p-1- qp P-1 
2 q Pe

For 1 .. ,

* eA.
W. -W. A+ W- q

Lw . .i W j1 qj(59)- r -+W 1 -q2aqj *3

aA W2A, aA
w Ij-l A + W j_ - q + W r- q.eDq aq ea lqj

3 2

-LW2 w W- W (7 (60)
eq, eq1 a e 2 eq-1 3 J - i

aq qiqJ aqJ c)qJ

Note also that

~~~~~ .- .* ..* s - . . . . .~ . . -.. . .
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W = -  (61)
C)q P q P
j =

= W. -JW (62)
aqeqj riaq acqP

a for j p (63)
aq 2 P aq2qp2p

4.4 The Summary of Recursive Relations

af-,eM.. f
Now, to summarize the procedure for computing the M -, + • and - matrices. First,

the backward recursive relations (64) are used to compute all the W T terms from i = 1 to ion.
wT a* T -;T

Then all the awl * -aw terms are computed by the recursive relations (65), (66) and (67)

for i=1 to iDn and Jul to Jun. but only for the cases of i k j. Next the forward recursive

relations (68) and (69) are used to calculate D, and c for ion to i=l, and relations (70). (71)

and (72) are used to calculate P . Q . N for j-1 to jzi. Finally, the necessary control

matrices. Mt , am + Lfq and - are computed by (73). (74), (75), (76). (77) and (78) for

q
i=1 to i=n and j-1 to jan. Noting that many of the terms are the same as those calculated for

the feedforward computations if the feedforward calculation is incorporated in the control loop,

then many of these computations need not be repeated.

4.4.1 Backwards Recursion

For i L.n

W W_ A

aA,
W W A + W - q, (64)

eq,
aA 32A

=q , q,- 2 + WI..-q,

., w "
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For :5i

ji JW A

aAi 65
'W ( H Ai + (65)-q

a= .a 2 Al. aA

.' W11 A + 2JW - q, + JW +l q2 W - q.
I aq -I2 q

For nj.1 ±

LWa2q

aw q ~ a3A. 2
L a2A j+WaJ4. 1 1 q (66)

j-1+2W- +~ 3p q2 + q 2
Dq aq qq J 2 qq

For i

awl awi
aq aqj
a, aw (67)

alq3  aq3  aq~

a, a ~ aw.
-i + I iW + + j

aq3 aj Dq3 aq
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4.4.2 Forward Recursion

For i L.,

a D j T A D(68)

c. m r 'A c. (69)

aw.T

Pi - A PiI + W8T (70)

=Ai 0 (71)
aj ail m~ij I

aqj

Nij A*, 1N,1 lj + Ji (72)

For Iu1,....n l..,

(a) M ljterm:

*For i j

Al.. -tr(- P..) (73)

aw,

Al ujtr(- W P. (74)

(b) [LM *q*-] termrr
.9q aq

if a > j
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-aw. aw,
q4-Ja[tr(- 2  Di) + Wr( Nj) - gT........ (75)

9q aq aqaaq, qq

i ~~~if j a i a, W

j*~1 [tr(- D +jr i T-- l(6
aq aq aqaq j  Dqi  aqtN -qJ

.a,

* (C) [] terim

for i j

for j > i

[-] = r(- 'WO,) (78)
aq 9q,

The number of multiplications involved with the matrix calculations is 1062n - 102In - 128
and the number of additions is 103n 2 

- 621n -96. This means that for n-6, the number of

multiplications is 40,594 and the number of additions is 37,926 for each update of the A and B

matrices. Therefore, the number of multiplications and additions is of n2 dependence and for n%6

the number of operations is 10 times the number of operations involved in the recursive

Lagrangian dynamics relations.

4.5 Recursive Parametric Matrices Using 3 x 3 Matrices

The previous formulation reduces the computational effort to O(n 2 ) for each matrix, which is

the lowest order that can be achieved. The only way to further reduce the computational cost is

to use 3 x 3 rotation matrices instead of 4 x 4 rotation-translation matrices. The 4 x 4 matrices

are inefficient because of some sparseness and because of the combination of translation with

rotation [7]. The 4 x 4 matrices require 64 multiplications for each matrix multiplication, while

3 x 3 matrices only require 27 multiplications, so a 58% reduction in coefficient multiplications

is effected.

The 3 x 3 rotation matrix A relates the orientations of coordinate systems j-1 and j, and Wj J
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and 'W are defined as before except the A matrices are 3 x 3. Using these relations, the

,M.. af af
derivation of the formulations for computing M' 5 -q + , and 5-, using 3x3 matrices is

a." m.. af af

presented in Appendix B. The procedure for calculating the M -q + and - , matrices

using 3 x 3 rotation matrices is now summarized. First, the backward relations (64), (65).

aW' T a T a-T pT a T T
(66), (67) and (79) are used to compute all the ' ' i, and the

q 0q' eq. aq eq q. q
terms for izI to i-n and j=l to jul. Next, the forward recursive relations (80), (81) and (82)

are used to calculate D., e. and c. for i-n to i=l, and relations (83). (84), (85), (86), (87) and

(88) are used to calculate Pi, k3 j" Q, b , Ni I., for j-l to jzi. Finally, the necessary controlam af af

matrices, M, q - and -are computed by (89), (90). (91), (92), (93) and (94) for

i-I to i-n and jul to jun.

4.5.1 Backwards Recursion

ew T a,.rT a ..T
The i ' - -term are calculated with the same recurrence relations (64), (65), (66)

and (67) as before except the matrices are now 3 x 3.

For i - I....n

'i a pi-I W i PFor j -

"• p. i-I aWi
5q aU -- pi

q eq.j

aq aq aq
cl.i aq"' " % 

(79P)

aq. aq a "q '

.
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4.5.2 Forward Recursion

For i I

D jWj in Tp T +A i Di~ + p i e i (80)

e. 3 e +*In + D W (81)

c. m. 'r. +A. c (82)

For i i

-9p.T aW.iT
P. - A P . +p k., + n 11J (83)

ij a*Ij I8qaq.

ki A~ 0k4  i+mlj + a ili-j+iniT ' (84)
caj a a a

+T i T

aakT  aw.T
bi - bilil i1il + in,.- + j (86)

aj-D aqj a

Nj il iA Na Pi + 'p4 n., TaW (87)
Dqj aq,

For I=1,.....n l. .,

(a) M ijterm:

For i 2: j

awi
M.. tr(-Pj) (89)

aq
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For j> i

aw
Mij tr(- 'W, Pi (90)

I M af"[ (b) -- i -- term:.

aq Rq

Ifi>j

alW aw a2w.
-- a D )+ tr( - N ) - e ' C , (9 1)

aq )q aqaq, aqi aqaq

If j i

au. ~f ,- ~w'W. a2v.
-M q+_f rtr( 17) + tr(_ N)- - - -  ci] (92)

aq "- aqaq Oq, aqq

af
(c) [1] term:

*fori2:j' .-.

Str(-0 (93)

for j > i
• 19f aw.

If - w (94)
.. +J oq,

The number of multiplications involved with the recursive 3 x 3 relations is 739n2 + 62n -54

* and the number of additions is (1161/2)n 2 - (19/2)n - 36. For n-6 the number of

.= multiplications for each update of A and B is 26922 and the number of additions is 20805. This

* is a greater than 40% reduction in the number of operations over using 4 x 4 rotation-translation

matrices.

f.. . . . ...........
".................... in ... . .. . .

i-... . . -4. . ...............
-o.*...* *' . . .
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5. CONCLUSION

" This report has presented a control scheme for accurate trajectory following with robotic

manipulators. The technique has been based on the use of measured joint displacements and

velocities to generate corrective torques through an adaptive controller that eliminates deviations

- of the manipulator from the desired trajectory under feedforward control, in the least squares

"o' sense. The controller has taken into account dynamic nonlinearities (coriolis and centrifugal

accelerations, pay-load change, etc.), geometric nonlinearities (nonlinear transformation matrices).

physical nonlinearities (e.g., coulomb damping), dynamic coupling between joints, and real-time

changes in the desired trajectory. Simulation results have been presented for a two-degree-of-

freedom manipulator. These results have indicated the effectiveness and robustness of the

controller. The stability issue has been addressed. Recursive relations have been developed to

compute the adaptive feedback gains, thereby improving the computational efficiency of the scheme

that makes the controller feasible under real-time changes in the desired trajectory. Two methods

of deriving the recursive relations based on Lagrangian dynamics have been presented: (i) using

4 x 4 rotation-translation matrices, and (ii) using 3 x 3 rotation matrices. For a six degree-of-

freedom manipulator, the 3x3 Lagrangian recursive relations involve 47,727 operations, which is

41% more efficient than the alternative method of using 4 x 4 rotation-translation matrices. The

number of operations involved in updating the feedback gain matrix would limit the maximum

update frequency to about 3 Hz when used with computers like the PDP 11 for six degree-of-

freedom manipulators.

V.
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APPENDIX A. TWO-LINK MANIPULATOR

*In this appendix we formulated a dynamic model for a two-link manipulator.

W

Figure A.1 Nomenclature for the two-link manipulator

9

q - (A.1)

d2

* A.1 Kinematics
u lcos( ) + lcos(9 .9)

p - (A.2)
u I sin(o) + 1sin(9. 2

u -lsine - 12sin( 102) -12sin(91.9 1 2 oI

- (A.31Lu l,€os0, lco,(9,*0) 2cos( 9 *.0) 8o,
anICs , I 2 Io~ 2 ) 12 Ii( 1+ 3 3 2
U

:. Lu

* J Lq (A.4)
au

7

......................................... *...
*.*..*;.-'. .":.

, - , ". -'.,*.'.. '.°,." ' -. ,, .' .'.." ."'.'...................................................................-......-.."......* , .* **" .,
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Velocity

q J-1 E v. v (A.5)

Joint Accelerations

]T " q ,jq

q - Ea ay I T q (A.6)

A.2 Dynamics

Define: I I + (m 2 + W/g) 1 2
12* d md2 g22 + 2

2 21 2 2( md2 + W/g 121 2

3 22

W,* , m Igd + m2 gl I. WlI

W * m gd + W I
2 2 2

Now for

M(q, W)" * f(q, 4, W) - r(t)

we have: 1%4 1 + I + 1 *COS
It 1 2 3 2

M 2  12 + 1/2 1 cos 8
12 23 2

22 1 2 13 C e2

M22 2

f -112 3'(2 10 ) 8 sine2 + W I  cosO* W *CoS(8|*+8)

f 2 1/2 3 3 a 2 Sin0 2  W I COS(O +0 2

* 1216e ie W o"ee
3

S,.

.-. *. .
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I-~o

1 0 0 0 0 0 -1 0
A 0 1 0 0 0 0 0 -1

0 0 1 * Minv AM AM Af Af2 12 I 1213 2
0 0 Minv 2  Minv 2AM AM2 A 2  Af 22

o 0
B 0 0

10" (I* 1* "/2 cosO)
-( 2 *13 * 2 s

-(+I3 */2 cosa ) (11+I *+I cos0)
2 32 1 2 3 2

where

Minv 2 - -(1 +*I /2 cosa )
12 2 3 2

Minv22  (I1*2*+1 *cs2

AM It 1 2 sie2 uw2 +13 )Sinl +W2 SIn(1+82

1AM 2 v 12*s0 2 [ +1 2 2 Cosa2 1 +2 +2 2 +I2sine2WI*sm( 1 +82

AM,, a ]sine W*sin(0 +0)i 2o

AM -I sin0 1 1 *Cosa e
22 2 2 12 1 2

Af "-21 2sineq

Af 12 2 2 sin 2(1+02
A f21  a 2 1 2 " 1

2t .

Af .

F22

*1'

,S
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APPENDIX B. RECURSIVE CONTROL PARAMETERS WITH 3 X
3 MATRICES

In this appendix the formulation for the three matrices. M . + and w. is developed

using 3 x 3 rotation matrices.

-/, ,

Figure B.1 3x3 Vector definitions

p.: vector from base coordinate origin to the joint i coordinate origin

p: vector from the origin i-I to coordinate origin i.

r: vector from the base coordinate origin to the link i center of mass

r : vector from coordinate origin i to the link i center of mass

n: r /ma I

W: defined as before except it is composed of 3 x 3 rotation matrices.

Then the generalized force as derived by Hoilerbach [7] is

S P, ap, C) aw 8 w*f .7.rtr( n 4.P 17  -W-Tm--2  '1 51

L .. r 1P P arr P
q, q8q,

" '

-- ~-- ~* ** *%'2~
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eq aq

q+-~ [tr( m
eq eq r-max '*J aqaq eaq, aq,

eLp p aw7 e 2w

ew e,~ T~w .W W~ aW ~ a2w(82

Now for the case where i :5j

= + Wip

ap ewi p (8. 3)

eq, eq,
a - w (8.4)

eq, eq,

For i 2tj

e2 -= I~ (B. 5)

eq,elqj cq,eq

+(m p ..2... + 'p n T2;i + iw pnp TLp + jW jl
aq Dqeq,aq P eq

pp p q qI

eq,aq~ P-i
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Let
n

Di~ ( = )mnT + i ~TW T+ InT+'WW
D :p p pp pP p p + Wp Pnp p +1WpJ

0 + 0 +inT T + jW.T +

I +1. p 1+1 A*I+ II p IIp

where

e. i M p + Pn pTW pT)

e, = e1 + M;6T + in T WT (B.9)

Similarly,

N.IM (mi p+'p Pn T P + W Pn T p + 
2W p

T p p aqj p p aJ ppaj

NiAi-,Ni~1 + pi+/il~ + in T ' (B.l10)

where

I. ~ m~---~+ pn T..-L)

The recurrence relation c. for the gravity term is the same as equation (69).

For i 2t

[-q-- ].=tr-?-o tr-N) -
T  p~ (812

3q c)q3qq q qc,
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a~f
(b) term

qa

[a, an

apa6T ap awi aw a T aw aw4
(mp + -L2 Pn T--. -- P T - p +--2J.-) (8. 13)

Pa. a, aq1- p ai aq, p aj aq, 'aq

Now,

ap~ =~(8. 14)
aq, aq,

p a (8. 15)
a~i aq1

For i 2 j

'ap~ 49W
pp (B. 16)

aw aw. 8

cq, c3q,
Therefore

p aw -+ *W PnT + 'W J---:-) (8. 18)

q' c",Pi paqj p qj p aj p aqj

Let

TA aT
0i (m p L2..T + 'p PnT. + Wfp

Pj ps' aq aqj aq. q
a.T  aW iT

~ O , ~ 4, ' ' - --.. . . . L j . . . . . ( 8 .1 9 )

where
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bi= (mcI__ + iPn r T )
P Paqj Paqj

a , i . a *k . "r

b i  f=i r! + . - + n.T-  (8.20)
D' jq aq i

for i k j

[ - - tr( - - - a 0 1) (B.2 1)

i Similarly for j > i

af clw. (.2

(7a: ij - ot( qi

ap p

Oka T T

;-. . C)i o3i0. - A ' ' + j. (8.23)

By a similar procedure we obtain

(c) M.. term:Ij

For i 2 j

Oi - i)  (B.24)

""9 i P T a W T

::P, W A Pi~ + ip~ki + 'n T-  + J. (0.25)

for Z i

Mi tr( W J) (B.26)

I.+
+ ,::: pT OwT

SDi

P!. i " ,P + ""'<"'j~ + "j -- T,, + j.--8.27

where Oq T 
0wT

P-A"Pki" + i+ - k, iT--i (8.28)

"" aqi  aq,
::2 The last new terms that need to be calculated are the p terms.

iOw

M r( W . (.6

p. , .-. .... -...... ,. .., , ...-.... .- . ... ....- ..-.-. .-.¢ .-. .-..... - . .. ...... .. .-. ....q -... ..
. - - . . . '. ' - .', " , ,- J . -. . .- . ' - ' , L. . . -,, , , . , - . . . - - , . . . . . . '. " . .,. . . ,, . -. , ., ' , ,, - '-O w-. .- , -
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K Since
V. t p + W.ip

Then
p. a PH - W iP

and for j 5i
-. ap, api, aw1

aqj aq aqj P

a7i api1  aqi

cqj Dqj aqj
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